Share


UGA Extension contacts:
Svoboda Pennisi

Pesticide and fertilizer recommendations are often made on a pounds per acre and tons per acre basis. While these may be applicable to field production of many crops, orchardists, nurserymen and greenhouse operators often must convert these recommendations to smaller areas, such as row feet, square feet, or even per tree or per pot. Thus pints, cups, ounces, tablespoons and teaspoons are the common units of measure. The conversion is frequently complicated by metric units of measure. This publication is designed to aid growers in making these calculations and conversions, and also provides other data useful in the management, planning and operation of horticultural enterprises.

Table of Contents

Forms of measurement for volume and length

Original manuscript by S.C. Myers and A.J. Lewis, former Extension horticulturists; Reviewed/revised by Bodie V. Pennisi, Gary L. Wade, Melvin P. Garber, Paul A. Thomas and James T. Midcap, Department of Horticulture

Pesticide and fertilizer recommendations often are made on a pounds-per-acre or tons-per-acre basis for field production. However, greenhouse and nursery operators, landscape professionals and orchardists often must convert these recommendations to smaller areas, such as row feet or square feet per tree or per pot. Pints, cups, ounces, tablespoons and teaspoons often are the common units of measure. Metric units of measure can further complicate conversion.

This publication is designed to help growers make these calculations and conversions and to provide other data useful in the management, planning and operation of horticultural enterprises. A number of formulas for calculating fertilizer application rates on a parts-per-million basis are given. Tables for fertilizer injector calibration using a conductivity meter, as well as pre-plant application rates for various soil mix components and amendments, also are provided. A brief explanation of how each table is used is provided.

Tables 1 through 3 help determine equivalent measures for liquid (volume) or dry (weight) chemical substances and also converting metric to English units.














Table 1. Equivalents for liquid measure (volume).
Units of Measure
Gallons (gal) Quarts (qt) Pints (pt) Fluid Ounces
(fl oz)
Cups Tablespoons (Tbs) Teaspoons (tsp) Milliliters (ml) Cubic Centimeters (cc) Liters
(L)
1 4 8 128 16
1 2 32 4
1 16 2 32
1 1/8 2 6 30
1 16 48 240
1 3 15
1 5
1 1
1000 1000 1












































Table 2. Equivalents for dry measure and weight
Dry Measure (volume)
This amount Equals This amount
3 level teaspoonfuls = 1 level tablespoonful
16 level tablespoonfuls = 1 cupful
2 cupfuls = 1 pint
2 pints = 1 quart
Weight
Pounds/Ounces to Metric
220.46 pounds (lb) = 100 kilograms (kg)
100 lb = 45.349 kg
2.204 lb = 1 kg
1.102 lb = 500 grams (g)
1 lb/16 ounces (oz) = 453.59 g
8 oz = 226.78 g
4 oz = 113.39 g
3.527 oz = 110 g
2 oz = 56.70 g
1 oz =

28.35 g

3/4 oz = 21.25 grams
1/2 oz = 14.17 g
1/4 oz = 7.08 g
1/8 oz = 3.54 g
1/16 oz = 1.77 g
1/32 oz = 885 milligrams (mg)
1/64 oz = 442 mg
1/128 oz = 221 mg
Ounces to Grams
3/8 = 10.631
1/2 = 14.75
5/8 = 17.718
3/4 = 21.162
7/8 = 24.805
1 = 28.349
2 = 56.698
1/256 = 0.111
1/128 = 0.221
1/64 = 0.443
1/32 = 0.886
1/16 = 1.772
1/8 = 3.544
1/4 = 7.087































Table 3. Metric system conversion table.
This amount Equals This amount
Liquid capacity
1 fluid ounce (fl oz) = 30 milliliters (ml)
1 pint (pt) = 16 fl oz = 473 ml
1 quart (qt) = 946 ml
1 gallon (gal) = 3,785 ml
1 liter (L) = 1,000 ml
1 milliliter (ml) = 1 cubic centimeter (cc)
Dry material weight
1 ounce (avoirdupois) = 28.4 grams (g)
1 pound (lb) = 453.6 g
1 kilogram (kg) = 1,000 g = 2.2 lb
Volume
1 cubic inch (in3) = 16.4 milliliters (ml)
1 cubic foot (ft3) = 7.48 gallons = 28.3 liters (L)
1 bushel (bu) = 1.24 ft3 = 35.2 L
1 cubic yard (yd3) = 21.7 bu = 765 L
Linear
1 inch (in.) = 2.54 centimeters (cm)
1 foot (ft) = 30.48 cm
1 yard (yd) = 91.44 cm
1 meter (m) = 100 cm
Area
1 square inch (in2) = 6.45 square centimeters (cm2)
1 square foot (ft2) = 0.09 square meter (m2)
1 square yard (yd2) = 0.84 square meter (m2)
1 acre (a) = 0.40 hectare (ha)
1 square mile (M2) = 2.59 square kilometer (km2)

Tables 4 through 7 help determine correct application rates for various pesticides.












Table 4. Dilution of liquid pesticides at various concentrations.
Dilution

Amount Desired

1 Gal 3 Gal 5 Gal 15 Gal
1:100 2 Tbs + 2 tsp 1/2 cup 3/4 cup + 5 tsp 1 cup + 3 Tbs
1:200 4 tsp 1/4 cup 6½ Tbs 1/2 cup + 2 Tbs
1:400 2 tsp 2 Tbs 3 Tbs 4 Tbs + 2½ tsp
1:800 1 tsp 1 Tbs 1 Tbs + 2 tsp 3 Tbs + 2½ tsp
1:1000 3/4 tsp 2¼ tsp 1 Tbs + 1 tsp 1 pint + 1/2 cup
Example: Directions call for a 1:200 dilution. To prepare 3 gallons of finished product, you would need to add 1/4 cup.












Table 5. Equivalent quantities of dry materials (wettable powders) for various quantities of water based on recommended pounds per 100 gallons.
Water Recommended Rates
100 gal 1 lb 2 lb 3 lb 4 lb 5 lb 6 lb
50 gal 1/2 lb 1 lb 1½ lb 2 lb 2½ lb 3 lb
25 gal 4 oz 8 oz 12 oz 1 lb 1¼ lb 1½ lb
12.5 gal 2 oz 4 oz 6 oz 8 oz 10 oz 3/4 lb
5 gal 3 Tbs 1½ oz 2½ oz 3¼ oz 4 oz 5 oz
1 gal 1 tsp 2 tsp 1 Tbs 4 tsp 5 tsp 2 Tbs
Example: Directions for use specify a rate of 4 lb per 100 gallons water. To prepare 1 gallon of solution would require 4 tsp of material.













Table 6. Equivalent quantities of liquid materials (emulsion concentrates, etc.) for various quantities of water based on pints per 100 gallons.
 
Water Recommended Rates
100gal 1/2 pint 1 pint 2 pint 3 pint 4 pint 5 pint
50 gal 4 fl oz 8 fl oz 1 pint 1½ pint 2 pints 2½ pints
25 gal 2 fl oz 4 fl oz 8 fl oz 12 fl oz 1 pint 1¼ pint
12.5 gal 1 fl oz 2 fl oz 4 fl oz 6 fl oz 8 fl oz 10 fl oz
5 gal 1 Tbs 1 fl oz 2 fl oz 2½ fl oz 3 fl oz 4 fl oz
1 gal 1/2 tsp 1 tsp 2 tsp 3 tsp 4 tsp 5 tsp
Example: Directions for use specify a rate of 4 pints per 100 gallons water. To prepare 5 gallons of solution would require 3 fl oz material.




























Table 7. Rate of application equivalent table.
Rate per Acre Rate per 1000 sq ft Rate per 100 sq ft
Liquid Materials
1 pint 3/4 Tbs 1/4 tsp
1 quart 1½ Tbs 1/2 tsp
1 gal 6 Tbs 2 tsp
25 gal 4โ…” pints 1/2 pint
50 gal 4โ…” quarts 1 pint
100 gal 2โ…“ gal 1 quart
200 gal 4โ…” gal 2 quarts
300 gal 7 gal 3 quarts
400 gal 9¼ gal 1 gal
500 gal 11½ gal 1¼ gal
Dry Materials
1 lb 2½ tsp 1/4 tsp
3 lb 2¼ Tbs 3/4 tsp
4 lb 3 Tbs 1 tsp
5 lb 4 Tbs 1¼ tsp
10 lb 1/2 cup 2 tsp
100 lb 2โ…” lb 1/4 lb
200 lb 4โ…” lb 1/2 lb
300 lb 7 lb 3/4 lb
400 lb 9¼ lb 1 lb
500 lb 11½ lb 1¼ lb
Examples: For liquid materials, 100 gallons per acre is equivalent to 2โ…“ gallons per 1000 ft2 or 1 quart per 100 ft2. For dry materials, 4 lb per acre is equivalent to 3 Tbs per 1000 ft2 or 1 tsp per 100 ft2.

Tables 8 through 9 help determine the correct application rates for fertilizers when nutrition recommendations are based on fertilizer weight.































Table 8. Fertilizer conversions for specified square feet and row area
Material grouped by approximate weight per pint Recommended rate per acre* Fertilizer Rate for Specific Areas
100 sq ft 1000 sq ft 10 sq ft 100 sq ft Per 10 ft of row spaced**
1 ft 2 ft 3 ft
lb lb lb Tbs pt Tbs Tbs cup
10 oz per pint
Sulfur or
Dried Blood
100 0.2 2.3 1.2 0.4 1.2 2.4 0.2
500 1.2 11.5 6.0 1.9 6.0 12.0 1.1
1000 2.3 23.0 12.0 3.7
13 oz per pint
Urea or
Ammonium Nitrate or
Ammonium Chloride
100 0.2 2.3 0.9 0.3 0.9 1.8 0.2
500 1.2 11.5 4.5 1.4 4.5 9.0 0.8
1000 2.3 23.0 9.0 2.8
16 oz per pint
Ammonium Phosphate or
Potassium Chloride or
Gypsum or
Mixed Fertilizers
100 0.2 2.3 0.7 0.2 0.7 1.4 0.1
500 1.2 11.5 3.5 1.2 3.5 7.0 0.7
1000 2.3 23.0 7.0 2.3
19 oz per pint
Calcium Nitrate or
Ammonium Sulfate or
Superphosphate
100 0.2 2.3 0.6 0.2 0.6 1.2 0.1
500 1.2 11.5 3.0 1.0 3.0 6.0 0.6
1000 2.3 23.0 6.0 2.0
23 oz per pint
Ground limestone or
Potassium sulfatex
100 0.2 2.3 0.5 0.2 0.5 1.0 0.1
500 1.2 11.5 2.5 0.8 2.5 5.0 0.5
1000 2.3 23.0 5.0 1.6
2000 4.6 46.0 10.0 3.2
* Any of the materials listed in the first column can be used at the rates shown below.
**High Rates, not desirable in row fertilization, are omitted in the table.
Example:
You wish to apply calcium nitrate at the rate of 500 lb per acre. It weighs approximately 19 oz per pint. For application to 100 ft2, you need 1.2 lb or 1.0 pint.






















Table 9. Fertilizer weight as measured by standard pot size
Fertilizer Pot Size
2¼ in. 3 in. 3½ in. 4 in. 5 in. 6 in.
Ammonium nitrate 2 oz 5½ oz 9 oz 15 oz 1 lb 12 oz 2 lb 15 oz
Urea, 45-0-0 2½ oz 6 oz 9 oz 1 lb 1 lb 13 oz 3 lb
Superphosphate 2½ oz 6 oz 9½ oz 1 lb 1 lb 14 oz 3 lb 2 oz
Dusting sulfur 2½ oz 6 oz 10 oz 1 lb 1 lb 14 oz 3 lb 3 oz
Peters, 20-5-30 2½ oz 6 oz 10 oz 1 lb 1 oz 1 lb 15 oz 3 lb 3 oz
Ammonium sulfate 3 oz 7 oz 11 oz 1 lb 3 oz 2 lb 3 oz 3 lb 11 oz
Osmocote, 14-14-14 3 oz 7½ oz 12 oz 1 lb 4 oz 2 lb 5 oz 3 lb 13 oz
MagAmp, 12-62-0 3 oz 7½ oz 12 oz 1 lb 4 oz 2 lb 5 oz 3 lb 14 oz
Gypsum, CaSO4 3 oz 8 oz 12½ oz 1 lb 5 oz 2 lb 7 oz 4 lb 1 oz
Calcium nitrate 3 oz 8 oz 12½ oz 1 lb 6 oz 2 lb 8 oz 4 lb 2 oz
Peters, 15-0-15 3½ oz 8 oz 13 oz 1 lb 6 oz 2 lb 9 oz 4 lb 5 oz
Potassium chloride 3½ oz 9 oz 14 oz 1 lb 8 oz 1 lb 12 oz 4 lb 9 oz
Sodium nitrate 4 oz 9 oz 15 oz 1 lb 9 oz 2 lb 14 oz 4 lb 13 oz
Dolomitic limestone 5½ oz 13 oz 1 lb 5 oz 2 lb 4 oz 4 lb 2 oz 6 lb 14 oz
Clay flower pots are frequently used for fertilizer measurement by greenhouse operators. The above shows average weights of several representative fertilizers as measured by standard clay pots when level full. The 3-in. standard is considered to contain 8 fl oz or 1 cup. Since the actual pot size varies with the manufacturer and the volume of a given weight of fertilizer varies with moisture and compaction, deviations of 10% may be expected but up to 40% may occur.

Tables 10 through 14 help determine the correct application rates for fertilizers with various analysis when nutrition recommendations are based on parts per million and fertilizer injectors are used to deliver liquid plant fertilizer. Table 12 is designed to help growers calibrate their injectors.




















Table 10. Element concentrations for pounds soluble fertilizer in 1000 gallons (U.S.) water.
Desired PPM Pounds of Fertilizer Needed
% Nitrogen (N) % Phosphate (P2O5) % Potash (K2O)
30 25 20 15 10 20 15 10 5 25 20 15 10
300 8.3 10.0 12.5 16.7 23.0 12.0 15.0 20.0 30.0
275 7.8 9.2 11.4 15.3 23.0 11.0 13.7 18.2 27.5
250 7.3 8.4 10.2 13.9 21.8 10.0 12.5 16.7 26.2
225 6.2 7.5 9.3 12.5 18.7 9.0 11.3 15.0 22.5
200 5.6 6.7 8.4 11.1 16.7 19.2 8.0 10.0 13.3 20.0
175 4.9 5.8 7.3 9.7 14.6 16.8 22.4 7.0 8.8 10.7 17.5
150 4.2 5.0 6.3 8.3 12.5 14.4 19.2 28.8 6.0 7.6 10.0 15.0
125 3.5 4.2 5.3 7.0 10.2 12.0 16.0 24.0 48.0 5.0 6.2 8.4 12.5
100 2.8 3.4 4.2 5.6 8.3 9.6 12.6 19.2 38.4 4.0 5.0 6.7 10.0
75 2.1 2.5 3.1 4.2 6.2 7.2 9.6 14.4 28.8 3.0 3.8 5.0 7.5
50 1.4 1.7 2.1 2.8 4.2 4.8 6.4 9.6 19.2 2.0 2.5 3.4 5.0
25 0.7 0.9 1.1 1.4 2.1 2.4 3.2 4.8 9.6 1.0 1.3 1.7 2.5

Example: You wish to apply 200 ppm N using a 20-10-20 soluble fertilizer. Reading across from 200 ppm under the 20% N column, you find 8.4 lb are needed for 1000 gallons water.

NOTES: 1 oz/2 gallons is about 30 lb/1000 gal; 1 oz/3 gallons is about 20 lb/1000 gal; 1 oz/5 gallons is about 12 lb/1000 gallons. For ppm, 1 oz/gallon = 7490 ppm; 1 oz/100 gallons = 75 ppm.

To determine parts per million (ppm) of an element in a fertilizer, simply multiply the percent of that element by 75. The answer will be the ppm of the element per oz of the fertilizer in 100 gallons of water. As an example, ammonium sulfate contains approximately 20% nitrogen. Twenty percent multiplied by 75 is 15, which is the ppm of nitrogen in 1 oz of ammonium sulfate per 100 gallons of water.
















































Table 11. Injection ratios and nitrogen concentrations for constant fertilization1
Ratio Ounces of Fertilizer per Gallon of Concentrate
100 ppm N 150 ppm N 200 ppm N
30% N formulaa
1:200 13.5 20.2 27.0
1:200 9.0 13.5 18.0
1:150 6.7 10.1 13.5
1:128 5.7 8.6 11.5
1:100 4.5 6.7 9.0
1:50 2.2 3.3 4.5
1:30 13.0 2.0 2.7
1:24 1.0 1.6 2.1
1:15 0.67 1.0 1.3
25% N formulab
1:300 16.5 24.7 33.0
1:200 11.0 16.5 22.0
1:150 8.2 12.3 16.5
1:128 7.0 10.5 14.0
1:100 5.5 8.2 11.0
1:50 2.7 4.1 5.5
1:30 1.6 2.4 3.3
1:24 1.3 1.9 2.6
1:15 0.82 1.2 1.6
20% N formulac
1:300 20.2 30.3 40.5
1:200 13.5 20.2 27.0
1:150 10.1 15.1 20.2
1:128 8.6 12.9 17.2
1:100 6.7 10.1 13.5
1:50 3.3 5.0 6.7
1:30 2.0 3.0 4.0
1:24 1.6 2.4 3.2
1:15 1.0 1.5 2.0
15% N formulad
1:300 27.0 40.5 54.0
1:200 18.0 27.0 36.0
1:150 13.5 20.2 27.0
1:128 11.5 17.2 23.0
1:100 9.0 13.5 18.0
1:50 4.5 6.7 9.0
1:30 2.7 4.0 5.4
1:24 2.1 3.2 4.3
1:15 1.3 2.0 2.7
1From Ball RedBook, 16th Edition, published by Ball Publishing. Reprinted with permission
ae.g., 30-10-10
be.g., 25-5-20, 25-10-10, 25-0-25
ce.g., 20-20-20, 20-5-30, 21-7-7
de.g., 15-15-15, 15-30-15, 16-4-12
































Table 12. Injector calibration with a conductivity meter1
A. Peters Single Element Fertilizer Components
ppm Nitrogen Ammonium
Nitrate
NH4NO3
34% N
Ammonium
Sulfate
(NH4)2SO4
21% N
Sodium
Nitrate
NaNO3
16% N
Potassium
Nitrate
KNO3
14% N
Calcium
Nitrate
Ca(NO3)2
15.5% N
Epsom
Salt
MgSO4
10% Mg
50 0.23 0.45 0.43 0.48 0.37 0.38
75 0.35 0.68 0.65 0.71 0.55 0.56
100 0.46 0.90 0.86 0.95 0.74 0.75
125 0.58 1.13 1.08 1.18 0.92 0.94
150 0.69 1.35 1.29 1.42 1.11 1.13
175 0.81 1.58 1.51 1.66 1.30 1.31
200 0.92 1.90 1.72 1.90 1.48 1.50
225 1.04 2.03 1.94 2.14 1.66 1.69
250 1.15 2.25 2.15 2.37 1.85 1.88
275 1.27 2.48 2.37 2.61 2.04 2.06
300 1.38 2.70 2.58 2.85 2.22 2.25
350 1.61 3.15 3.01 3.32 2.59 2.63
400 1.84 3.60 3.44 3.80 2.96 3.00
450 2.07 4.05 3.87 4.27 3.33 3.38
500 2.30 4.50 4.30 4.75 3.70 3.75
550 2.53 4.95 4.73 5.22 4.07 4.13
600 2.76 5.40 5.16 5.70 4.44 4.50
650 2.99 5.85 5.59 6.17 4.81 4.88
700 3.22 6.30 6.02 6.65 5.18 5.25
750 3.45 6.75 6.45 7.12 5.50 5.63
800 3.68 7.20 6.88 7.60 5.92 6.00
850 3.91 7.65 7.31 8.07 6.29 6.38
900 4.14 8.10 7.74 8.55 6.66 6.75
950 4.37 8.55 8.17 9.02 7.03 7.13
1000 4.60 9.00 8.60 9.50 7.40 7.50
1Adapted from Grace Horticultural Products. W.1 R. Grace & Co. Cambridge, Massachusetts 02140.
NOTES: 1) For use with meters in millimhos with Peters® Single Element Fertilizer Components. 2) These are readings made with distilled water. 3) Test your plain irrigation water first and subtract that reading from the fertilizer-injected water. For example, your water test indicates 0.5 mmhos and you are applying 500 ppm N with calcium nitrate. Your calibration reading is 3.70 – 0.5 = 3.20 mmhos.
































Table 12. Injector calibration with a conductivity meter1
B. Peters Mixed Soluble Fertilizer Analysis
ppm Nitrogen 20-20-20
20-19-18
20-10-15 20-5-30 25-5-20 25-10-10
30-10-10
5-11-26
Hydrosol
15-16-17
15-11-29
15-20-25
50 0.23 0.31 0.22 0.12 0.09 1.00 0.32
75 0.34 0.47 0.33 0.18 0.14 1.50 0.48
100 0.45 0.62 0.44 0.24 0.18 2.00 0.65
125 0.56 0.78 0.56 0.30 0.23 2.50 0.82
150 0.68 0.93 0.69 0.36 0.27 3.00 1.00
175 0.79 1.09 0.81 0.43 0.32 3.50 1.20
200 0.90 1.24 0.94 0.51 0.36 4.00 1.40
225 1.01 1.40 1.07 0.57 0.41 4.50 1.56
250 1.13 1.55 1.20 0.62 0.47 5.00 1.72
275 1.24 1.71 1.32 0.71 0.51 5.50 1.91
300 1.35 1.86 1.43 0.80 0.54 6.00 2.10
350 1.58 2.17 1.66 0.92 0.64 6.50 2.45
400 1.80 2.48 1.90 1.04 0.74 7.00 2.80
450 2.03 2.79 2.15 1.18 0.85 7.50 3.15
500 2.25 3.10 2.40 1.32 0.96 8.00 3.50
550 2.48 3.41 2.61 1.45 1.06 3.84
600 2.70 3.72 2.82 1.58 1.16 4.18
650 2.93 4.03 3.03 1.71 1.26 4.52
700 3.15 4.34 3.24 1.84 1.36 4.80
750 3.38 4.65 3.45 1.98 1.46 5.20
800 3.60 4.96 3.66 2.11 1.56 5.54
850 3.83 5.27 3.87 2.24 1.66 5.88
900 4.05 5.58 4.08 2.37 1.76 6.22
950 4.28 5.89 4.29 2.50 1.86 6.56
1000 4.50 6.20 4.5 2.63 1.96 6.90
1Adapted from Grace Horticultural Products. W.1 R. Grace & Co. Cambridge, Massachusetts 02140.
NOTES: 1) For use with meters in millimhos with Peters® Fertilizer formulations. 2) These readings are made with distilled water. 3) Test your plain irrigation water first and subtract that reading from the fertilizer-injected water. For example, your water test indicates 0.2 mmhos and you are applying 200 ppm N with 15-15-15 fertilizer. Your calibration reading is 1.30 – 0.2 = 1.10 mmhos.
































Table 12. Injector calibration with a conductivity meter1
B. Peters Mixed Soluble Fertilizer Analysis (cont.)
ppm Nitrogen 15-15-15 15-10-30 15-30-15 15-0-15 16-4-12 21-7-7
Acid
21-7-7
Neutral
50 0.30 0.32 0.31 0.36 0.32 0.28 0.21
75 0.46 0.51 0.47 0.55 0.48 0.42 0.32
100 0.62 0.70 0.62 0.74 0.64 0.56 0.42
125 0.79 0.87 0.78 0.94 0.81 0.70 0.53
150 0.96 1.50 0.93 1.15 0.98 0.84 0.63
175 1.13 1.23 1.09 1.35 1.14 0.98 0.74
200 1.30 1.41 1.24 1.55 1.31 1.12 0.84
225 1.47 1.59 1.40 1.72 1.47 1.26 0.95
250 1.65 1.78 1.55 1.90 1.62 1.40 1.05
275 1.82 1.95 1.71 2.09 1.81 1.54 1.16
300 1.98 2.12 1.86 2.28 2.00 1.68 1.26
350 2.31 2.45 2.17 2.64 2.29 1.96 1.47
400 2.65 2.78 2.48 3.00 2.58 2.24 1.68
450 2.98 3.12 2.79 3.34 2.93 2.52 1.89
500 3.25 3.46 3.10 3.68 3.28 2.80 2.10
550 3.55 3.76 3.41 3.98 3.57 3.08 2.31
600 3.85 4.06 3.72 4.28 3.86 3.36 2.52
650 4.15 4.36 4.03 4.58 4.15 3.64 2.73
700 4.45 4.66 4.34 4.88 4.44 3.92 2.94
750 4.75 4.95 4.65 5.20 4.72 4.20 3.15
800 5.05 5.25 4.96 5.50 4.98 4.48 3.36
850 5.35 5.55 5.27 5.80 5.24 4.76 3.57
900 5.65 5.85 5.58 6.10 5.50 5.04 3.78
950 5.95 6.15 5.89 6.40 5.76 5.32 3.99
1000 6.25 6.45 6.20 6.70 6.00 5.60 4.20
1Adapted from Grace Horticultural Products. W.1 R. Grace & Co. Cambridge, Massachusetts 02140.
NOTES: 1) For use with meters in millimhos with Peters® Fertilizer formulations. 2) These readings are made with distilled water. 3) Test your plain irrigation water first and subtract that reading from the fertilizer-injected water. For example, your water test indicates 0.2 mmhos and you are applying 200 ppm N with 15-15-15 fertilizer. Your calibration reading is 1.30 – 0.2 = 1.10 mmhos.





















Table 13A. Parts per million of desired nutrient to ounces of fertilizer carrier in 100 gallons of water and vice versa.1
Ounces of Fertilizer Carrier
in 100 Gallons
Percentage of Desired Nutrient in Fertilizer Carrier
12 13 14 15.5 16 20 20.5 21
1 9 9.7 10.5 11.6 12.0 15.0 15.3 15.7
2 18 19.5 21.0 23.2 24.0 29.9 30.7 31.4
3 27 29.3 31.4 35.0 35.9 44.9 46.0 47.2
4 36 38.9 41.9 46.4 47.9 59.9 61.4 62.9
6 54 58.4 62.9 70.0 71.9 89.9 92.1 94.3
8 72 77.8 83.8 92.8 95.8 119.7 122.7 125.7
16 144 155.7 167.7 185.6 191.7 239.5 245.5 251.5
24 216 233.5 251.5 278.4 287.5 359.2 368.2 377.2
32 288 311.4 335.4 371.3 383.4 479.0 490.9 502.9
40 359 389.2 419.2 464.0 479.2 598.7 613.7 628.6
48 431 467.0 503.0 556.8 575.0 718.5 736.4 754.4
56 503 544.7 586.9 649.7 670.9 838.2 859.2 880.1
64 575 622.7 670.7 742.4 766.7 958.0 981.9 1005.8
1From Nelson, P. V. 1998. Greenhouse Operations and Management, 5th ed. Published by Prentice Hall, Inc. Reprinted with permission.





















Table 13A. Parts per million of desired nutrient to ounces of fertilizer carrier in 100 gallons of water and vice versa.1 (cont)
Ounces of Fertilizer Carrier
in 100 Gallons
Percentage of Desired Nutrient in Fertilizer Carrier
33 44 45 53 60 62
1 24.7 32.9 33.7 39.7 44.9 46.4
2 49.4 65.9 67.4 79.3 89.8 92.0
3 74.1 98.8 101.0 117.0 134.7 139.2
4 98.8 131.7 134.7 158.7 179.6 185.6
6 148.2 197.6 202.1 238.0 269.4 278.4
8 197.6 263.4 269.4 317.3 359.2 371.2
16 395.2 526.9 538.9 634.6 718.5 742.4
24 592.7 790.3 808.3 952.0 1077.7 1113.6
32 790.3 1053.7 1077.7 1269.3 1436.9 1484.8
40 987.9 1317.2 1347.1 1586.6 1796.2 1856.1
48 1185.5 1580.6 1616.5 1903.9 2155.4 2227.2
56 1383.0 1844.0 1886.0 2221.2 2514.6 2598.4
64 1580.6 2107.5 2155.4 2538.6 2873.9 2969.7
1From Nelson, P. V. 1998. Greenhouse Operations and Management, 5th ed. Published by Prentice Hall, Inc. Reprinted with permission.





















Table 13B. Parts per million of desired nutrient to ounces of fertilizer carrier in 100 gallons of water and vice versa.1
Grams of Fertilizer Carrier
in 1 Liter
PPM of Desired Nutrient in Fertilizer Carrier
12 13 14 15.5 16 20 20.5 21
0.1 12 13 14 16 16 20 20.5 21
0.2 24 26 28 31 3 40 41.0 42
0.3 36 39 42 47 48 60 61.5 63
0.4 48 52 56 62 64 80 82.0 84
0.6 72 78 84 93 96 120 123.0 126
0.8 96 104 112 124 128 160 164.0 168
1.0 120 130 140 155 160 200 205.0 210
1.5 180 195 210 233 240 300 307.0 315
2.0 240 260 280 310 320 400 410.0 420
2.5 300 325 350 388 400 500 512.5 525
3.0 360 390 420 465 480 600 615.0 630
3.5 420 455 490 543 560 700 717.5 735
4.0 480 520 560 620 640 800 820.0 840
1From Nelson, P. V. 1998. Greenhouse Operations and Management, 5th ed. Published by Prentice Hall, Inc. Reprinted with permission.





















Table 13B. Parts per million of desired nutrient to grams of fertilizer carrier in 1 liter water and vice versa.1 (cont)
Grams of Fertilizer Carrier
in 1 Liter
PPM of Desired Nutrient in Fertilizer Carrier
33 44 45 53 60 62
0.1 33 44 45 53 60 62
0.2 66 88 90 106 120 124
0.3 99 132 135 159 180 186
0.4 132 176 180 212 240 248
0.6 198 264 270 318 360 372
0.8 264 352 360 424 480 496
1.0 330 440 450 530 600 620
1.5 495 660 675 795 900 930
2.0 660 880 900 1060 1200 1240
2.5 825 1100 1125 1325 1500 1550
3.0 990 1320 1350 1590 1800 1860
3.5 1155 1540 1575 1855 2100 2170
4.0 1320 1760 1800 2120 2400 2480
1From Nelson, P. V. 1998. Greenhouse Operations and Management, 5th ed. Published by Prentice Hall, Inc. Reprinted with permission.

















Table 14. Conversion factors among electrical conductivity (EC) units.
From To Multiply by:
mmhos/cm or mS/cm or dS/cm mhos x 10-5/cm 100
mhos x 10-5/cm mmhos/cm or mS/cm or dS/cm 0.01
mmhos/cm or mS/cm or dS/cm µmhos or mhos x 10-6 1000
µmhos or mhos x 10-6 mmhos/cm or mS/cm or dS/cm 0.001
mmhos/cm or mS/cm or dS/cm ppm 670a
ppm mmhos/cm or mS/cm or dS/cm 0.0014925a
mhos x 10-5/cm ppm 6.70a
ppm mhos x 10-5/cm 0.14925a
µmhos or mhos x 10-6 ppm 0.6702a
ppm µmhos or mhos x 10-6 1.4925a
Adapted from T. J. Cavins, et al., 2000.
a Some labs report EC in terms of ppm or convert EC to ppm. Although 670 is the basis used in this example, the conversion factor can vary between 640 and 700. This conversion factor is an average due to the variability in the type of fertilizer salts that contribute to the substrate EC in each sample, and it should be considered a broad approximation. Expressing EC in terms of mS/cm or mhos/cm is the preferred method.

Table 15 is designed to help growers decide which acid to add and in what quantities to acidify their irrigation water.


























Table 15. Various acids to add to irrigation water for acidification.
Note: The table is an example from a website called AlkCalc, available at https://e-gro.org/alkcalc/dist/index.html. It is an acidification analysis done on a water sample with a starting pH of 8.0 and alkalinity of 200 ppm CaCO3 acidified to an end point pH of 5.8. For your specific water sample, follow the directions on the website. You will need to obtain a water report on your irrigation water prior to using AlkCalc. You will need to know the water pH and alkalinity of your sample and have an idea about what end-point pH you want to obtain after acidification. The wesbite also gives you information about the cost of the acidification treatment.
ALTERNATIVE ACIDS TO ADD TO IRRIGATION WATER
Amounts Acids
Phosphoric Acid (75%) Phosphoric Acid (85%) Sulfuric Acid (35%) Sulfuric Acid (93%) Nitric Acid (61.4%) Nitric Acid (67%)
For Small Volumes
ml per liter 0.253 0.207 0.348 0.087 0.234 0.209
fl oz per gallon 0.032 0.027 0.044 0.011 0.030 0.027
ml per gallon 0.956 0.785 1.316 0.330 0.884 0.793
For a 1:100 Injector
fl oz per gallon (conc.) 3.23 2.65 4.45 1.12 2.99 2.68
ml per gallon (conc.) 95.63 78.47 131.59 32.98 88.40 79.28
For a 1:128 Injector
fl oz per gallon (conc.) 4.14 3.40 5.70 1.43 3.83 3.43
ml per gallon (conc.) 122.41 100.44 168.44 42.22 113.16 101.48
For a 1:200 Injector
fl oz per gallon (conc.) 6.47 5.31 8.90 2.23 5.98 5.36
ml per gallon (conc.) 191.27 156.94 263.19 65.97 176.81 158.56
NUTRIENTS ADDED BY EACH TYPE OF ACID
Nutrients Added Phosphorus Phosphorus Sulfur Sulfur Nitrogen Nitrogen
Amount Added (ppm) 94.6 94.6 50.3 50.3 43.7 43.7
Use the information above for modifying your fertility program.

Tables 16 through 20 help determine which fertilizers to use based on chemical analysis, reaction in substrate, longevity in substrate (slow release fertilizers), and incorporation rates for some popular slow release fertilizers. Tables 17 and 18 are specifically designed to provide detailed information on fertilizer calculations, which also aid determine correct application rates.






































Table 16. Amounts of nutrient sources to combine in making various fertilizer formulas1
Fertilizer Name Nutrient Sources2
Analysis 33
-0
-0
13
-0
-44
15.5
-0
-0
16
-0
-0
21
-0
-0
45
-0
-0
0
-0
-60
12
-62
-0
21
-53
-0
% of N
as NH4
+ Urea
Reaction
in
Substrate4
Ammonium nitrate 33-0-0 X                 50 A
Potassium nitrate 13-0-44   X               0 N
Calcium nitrate 15.5-0-0     X             6 B
Sodium nitrate 16-0-0       X           0 B
Ammonium sulfate 21-0-0         X         100 A
Urea 45-0-0           X       100 SA
Potassium chloride 0-0-60             X     N
Monoammonium phosphate 12-62-0               X   100 A
Diammonium phosphate3 21-53-0                 X 100 SA
Magnesium nitrate 10-0-0                   0 B
Chrysanthemum green 18-0-22 1 2     1         47 A
General Summer 20-10-24 1         1 2   1 83 A
General low phosphate 21-4-20 7           4   1 55 A
General summer 21-17-20 1         2 3   3 90 A
General 17-6-27 4           4   1 57 A
UConn Mix 19-5-24   6 2     2   1   49 N
Editor’s favorite 20-5-30   13       4     2 57 SA
20-20-20 substitute 20-20-22   4       1     3 67 SA
Starter and pink hydrangea 12-41-15   1           2   65 SA
Starter and pink hydrangea 17-35-16           1 4   10 100 SA
N-K only 16-0-24 2     1     2     40 SA
N-K only 20-0-30 1 2               28 SA
Blue hydrangea 13-0-22         2   1     100 VA
Blue hydrangea 15-0-15         3   1     100 VA
Acid 21-9-9 3 1     7   1   2 79 VA
Spring carnation 10-0-17       5     2     0 B
Winter nitrate 15-0-15   1 2             5 B
Winter potash 15-0-22   1 1             4 B
Lily substitute 16-4-12 1 4 6           1 22 N
High K 15-10-30   7 1           2 28 N
1From Nelson, P.V. 1998. Greenhouse Operations and Management, 5th ed. Published by Prentice Hall, Inc. Reprinted with permission.
2For names of nutrient sources, see the first nine entries in the Name column.
3Diammonium phosphate may be pelletized and coated. To dissolve, use very hot water and stir vigorously. Sediment formation should not cause concern. Use crystalline potassium chloride if possible.
4B = basic; N = neutral; SA = slightly acid; A = acid; VA = very acid.
NOTE: For example, an 18-0-22 formula fertilizer can be formulated by blending together 1 lb of ammonium nitrate plus 2 lb of potassium nitrate plus 1 lb of ammonium sulfate. This formulation is determined by locating the 18-0-22 formula in the Analysis column. Then the three numbers 1, 2 and 1 are located in the row after this formula. Each of the three numbers is traced to the X above it and then to the nutrient source to the left of the X.








Table 17. Formulas for additional fertilizer calculations
Compound Formula Weight
Ammonium Nitrate
Ammonium Sulfate
Calcium Nitrate
Potassium Nitrate
Potassium Chloride
Potassium Sulfate
Urea
NH4NO3
(NH4)2SO4
Ca(NO3)2
KNO3
KCl
K2SO4
CO(NH2)2
80.8
132.0
164.0
101.1
74.6
174.2
60.0
Element Symbol Atomic Weight
Calcium
Carbon
Chlorine
Hydrogen
Nitrogen
Oxygen
Phosphorus
Potassium
Ca
C
Cl
H
N
O
P
k
40.1
12.0
35.5
1.0
14.0
16.0
31.0
39.1

Using Chemicals

1)





mg of fertilizer source/liter of water = (ppm)(formula weight)
(atomic weight of element)(number of units in formula of fertilizer source)

2)





ppm = (mg of fertilizer/liter of water)(atomic weight of element)(number of units of element in formula of fertilizer source)
(formula weight of fertilizer source)

3) to convert mg/L to lb/100 gallons, multiply milligrams by 0.0008344

4) to convert lb/100 gallons to mg/L, divide pounds by 0.0008344

EXAMPLE: How many pounds of potassium sulfate (K2SO4) need to be dissolved in 100 gallons of water to make 100 ppm K solution. Get the formula weight of potassium sulfate (K2SO4) and the atomic weight of potassium from Table 14. Then:
1) mg of K2SO4 / liter of water = (100 x 174.2) ÷ (39.1 x 2) = 222.8 mg/L
2) 222.8 mg/L x 0.00083440 = 0.186 lb potassium sulfate/100 gallons

Using Premixed Fertilizers

1)





mg of mixed fertilizer/liter of water = (ppm of N desired)(100)
(% N in fertilizer)

2)





ppm of P = (mg of mixed fertilizer/liter of water)(% P2O5)(0.4366)
100

3)





ppm of K = (mg of mixed fertilizer/liter of water) (% K2O) (0.8301)
100

4)





mg of mixed fertilizer/liter of water = (ppm of P desired)(100)
(% P2O5)(0.4366)

5)





mg of mixed fertilizer/liter of water = (ppm of k desired)(100)
(% K2O) (0.8301)

6)





mg of mixed fertilizer/liter of water = (mg of mixed fertilizer/liter of water)(% N)
10




















































Table 18. Miscellaneous conversions used in fertilizer calculations
1 millimeter or cubic centimeter of water weighs 1 gram
1 liter of water weighs 1 kilogram
1 gallon of water weighs 8.34 lb
1 part per million (ppm) = 0.0001%
= 1 milligram/liter
=0.013 ounces in 100 gallons of water
1% = 10,000 ppm
= 10 grams per liter
= 10,000 grams per kilogram
= 1.33 ounces by weight per gallon of water
= 8.34 lb per 100 gallons of water
0.1% = 1000 ppm = 1000 milligrams per liter
0.01% = 100 ppm = 100 milligrams per liter
0.001% = 10 ppm = 10 milligrams per liter
0.0001% = 1 ppm = 1 milligram per liter
Approximate weight-volume measurements for making small volumes of water soluble fertilizers
1 cup = 8 oz or 0.5 lb of fertilizer
2 cups = 1 lb of fertilizer
1 tablespoon = 0.5 oz of fertilizer
2 tablespoons = 1 oz of fertilizer
Useful conversions
1 ton/acre = 20.8 g/square foot
1 ton/acre = 1 lb/21.78 square feet
1 g/square foot = 96 lb/acre
1 lb/acre = 0.0104 g/square foot
100 lb/acre = 0.2296 lb/100 square feet
grams/square foot x 96 = lb/acre
lb/square foot x 43,560 = lb/acre
100 square feet = 1/435.6 or 0.002296 acres
Weight conversions from lb/acre to weight/100 square feet
lb/acre amount applied/100 square feet
100 3.7 oz
200 7.4 oz
300 11.1 oz
400 14.8 oz
500 1 lb 2.5 oz
600 1 lb 6 oz
700 1 lb 10 oz
800 1 lb 13 oz
900 2 lb 1 oz
1000 2 lb 5 oz
2000 4 lb 10 oz
Percent to Ratio Conversion
2.0% 1:50
1.5% 1:67
1.0% 1:100
0.9% 1:111
0.8% 1:128
0.7% 1:143
0.6% 1:167
0.5% 1:200
0.4% 1:250
0.3% 1:333
0.2% 1:500












































Table19. Osmocote® controlled-release fertilizers and their release periods1
Analysis Longevity2 (months) Product Name
14-14-14 3-4 Osmocote®3
19-6-12 3-4 Osmocote®3
13-13-13 8-9 Osmocote®3
18-6-12 8-9 Osmocote®3 Fast Start
18-6-12 8-9 Osmocote®3
17-7-12 12-14 Osmocote®3
15-9-12 3-4 Osmocote® Plus
15-9-12 5-6 Osmocote® Plus
15-9-12 8-9 Osmocote® Plus
15-9-12 12-14 Osmocote® Plus
15-9-12 14-16 Osmocote® Plus
16-8-12 8-9 Osmocote® Plus Minors Tablets
19-5-8 + Minors 8-9 Osmocote® Pro with Poly-S
19-5-9 + Minors 12-14 Osmocote® Pro with Poly-S
20-5-8 + Minors 8-9 Osmocote® Pro with Poly-S
24-4-8 8-9 Osmocote® Pro with Resin Coated Urea
24-4-7 12-14 Osmocote® Pro with Resin Coated Urea
24-4-6 14-16 Osmocote® Pro with Resin Coated Urea
21-4-7 w/ Mg & Fe 8-9 Osmocote® Pro with Resin Coated Urea
21-3-7 w/ Mg & Fe 12-14 Osmocote® Pro with Resin Coated Urea
22-4-9 + Minors 5-6 Osmocote® Pro with Resin Coated Urea
22-4-8 + Minors 8-9 Osmocote® Pro with Resin Coated Urea
22-4-7 + Minors 12-14 Osmocote® Pro with Resin Coated Urea
22-4-6 + Minors 14-16 Osmocote® Pro with Resin Coated Urea
20-4-9 8-9 Osmocote® Pro with Methylene Urea and Ureaform
20-4-8 12-14 Osmocote® Pro with Methylene Urea and Ureaform
23-4-8 + Minors 14-16 Osmocote® Pro + ScottKote™
19-7-10 + Fe 3-4 Osmocote® Pro with Uncoated NPK and Iron
18-7-10 + Fe 8-9 Osmocote® Pro with Uncoated NPK and Iron
17-7-10 + Fe 12-14 Osmocote® Pro with Uncoated NPK and Iron
13-10-13 5-6 Osmocote® Pro with IBDU and Minors
15-10-10 8-9 Osmocote® Pro with IBDU and Minors
18-8-8 8-9 Osmocote® Pro with IBDU and Minors
20-4-8 8-9 Osmocote® Pro with IBDU and Minors
18-5-9 12-14 Osmocote® Pro with IBDU and Minors
17-6-12 + Minors 3-4 Sierra® Tablets
17-6-10 + Minors 8-9 Sierra® Tablets
1 From the Scotts Company and Subsidiaries, Marysville, OH 43041.
2 At an average root substrate temperature of 70 °F (21 °C).
3 Six trace elements plus magnesium.





























Table 20. Rates in lb/yd3 (kg/m3) for incorporation of three of the most popular formulations of Nutricote into greenhouse root substrates.
Release Type (days) Sensitive Crops Medium-Feeding Crops Heavy-Feeding Crops
13-13-13
70 2.5 (1.5) 5 (3.0) 8.5 (5.1)
100 3.5 (2.1)        
140 5 (3.0) 9 (5.4) 13 (7.8)
180 6 (3.6) 11 (6.6) 17 (10.2)
270 8 (4.8) 13 (7.8) 21 (12.6)
360 11 (6.6) 15 (9.0) 25 (15.0)
  14-14-14
40 2 (1.2) 5 (3.0) 8 (4.7)
70 4 (2.4) 9 (5.4) 14 (8.3)
100 5 (3.0) 12 (7.1) 20 (11.9)
140 8 (4.7) 15 (9.0) 22 (13.0)
180 12 (7.1) 20 (11.9) 28 (16.6)
270 16 (9.5) 24 (14.2) 32 (19.0)
360 20 (11.9) 28 (16.6) 36 (21.3)
  18-6-8
70 2 (1.2) 4.5 (2.7) 7.5 (4.5)
100 3 (1.8) 6.5 (3.9) 11 (6.6)
140 4.5 (2.7) 8 (4.8) 12 (7.2)
180 6 (3.6) 11 (6.6) 14 (8.4)
270 8 (4.8) 13 (7.8) 16 (12.0)
360 11 (6.6) 15 (9.0) 18 (13.8)
From Nelson, P.V. 1998. Greenhouse Operations and Management, 5th ed. Published by Prentice Hall, Inc. Reprinted with permission.

Tables 21 through 22 are designed to assist growers in correcting the pH of the growing substrate.










Table 21. Materials and rates necessary to lower the pH level of greenhouse potting substrate 0.5 to 1.0 units.
Material Pounds to incorporate
in lb/yd3
Pounds to dissolve
in 100 gallons watera
Rate of change
in pH
Aluminum sulfate 1.5 6.0 Rapid
Iron sulfate 1.5 6.0 Moderate
Finely ground elemental sulfur 0.75 Slow
Adapted from Bailey, D.A. 1996.
a Apply this drench as a normal watering, about 1 quart per square foot or 8 fluid ounces per 6-in. pot.















Table 22. Approximate amount of materials required to change pH of peat-based potting mixes.
Beginning pH Pounds per cubic yard to change acidity to pH 5.7 for:
50% Peat
50% Moss
100% Peat
7.52 2.0 3.4
7.0 1.5 2.5
6.5 1.0 2.0
5.03 2.5 3.5
4.5 5.6 7.4
4.0 7.9 11.5*
3.5 10.5* 15.58
Adapted from Conover, C.A., and R.T. Poole. 1984.
2 Add sulfur or acidifying mixture to lower pH to 5.7.
3 Add dolomitic lime or equivalent amount of calcium to raise pH to 5.7.
* Addition of more than 10 lb of dolomitic per yd3 can cause micronutrient deficiencies.

Table 23 will help when applying various plant growth regulators.






















Table 23A. Dilution/conversion chart for A-REST (0.0264% active ingredient).
Spray
Spray Solution (ppm) Fluid Ounces per Gallon of Final Solution Milliliters per Gallon of Final Solution Milliliters per Liter
of Final Solution
1 48 14.34 3.79
3 1.45 43.02 11.36
10 4.85 143.39 37.88
25 12.12 358.47 94.70
50 24.24 716.93 189.39
75 36.36 1075.40 284.09
100 48.48 1433.87 378.79
Drench
Dose (Milligrams per 6-in.Pot) Drench Volume per 6-in.Pot*
(Fluid Ounces)
ppm solution Fluid Ounces per Gallon of Final Solution Milliliters per Gallon of Final Solution Milliliters per Liter of Final Solution
0.125 4 1.06 0.51 15.15 4.0
0.25 4 2.11 1.02 30.30 8.01
0.50 4 4.23 2.05 60.61 16.01
0.75 4 6.34 3.07 90.91 24.02
1.00 4 8.45 4.10 121.21 32.02
Adapted from Hammer, P.A. 1992.
*2 fl oz/4-in. pot; 3 fl oz/5-in. pot; 10 fl oz/8-in. pot



















Table 23B. Dilution/conversion chart for CYCOCEL (11.8% active ingredient).
Spray
Spray Solution (ppm) Fluid Ounces per Gallon of Final Solution Milliliters per Gallon of Final Solution Milliliters per Liter
of Final Solution
1,000 1.08 32.08 8.47
1,500A 1.63 48.12 12.71
2,000 2.17 64.16 16.95
2,500 2.71 80.20 21.19
3,000B 3.25 96.24 25.42
5,000 5.42 160.40 42.37
Drench
Dose (Milligrams per 6-in. Pot) Drench Volume per 6-in. Pot*
(Fluid Ounces)
ppm solution Fluid Ounces per Gallon of Final Solution Milliliters per Gallon of Final Solution Milliliters per Liter of Final Solution
355 6 2,000 2.17 64.18 16.95
532 6 3,000B 3.25 96.18 25.42
710 6 4,000 4.34 128.36 33.90
Adapted from Hammer, P.A. 1992.
ACommonly referred to as 1:80.
BCommonly referred to as 1:40.
*2 fl oz/2.25- to 3-in. pot; 3 fl oz/4-in. pot; 4 fl oz/5-in. pot; 8 fl oz/8-in. pot.












Table 23C. Dilution/conversion chart for B-NINE WSG (85% active ingredient).
Spray
Spray Solution (ppm) Ounces per Gallon of Final Solution Grams per Gallon of Final Solution Grams per Liter of Final Solution
1,000 0.16 4.45 1.18
2,500 0.39 11.13 2.94
5,000 0.79 22.26 5.88
7,500 1.18 33.40 8.82
Adapted from Hammer, P.A. 1992.
























Table 23D. Dilution/conversion chart for BONZI (0.4% active ingredient).
Spray
Spray Solution (ppm) Fluid Ounces per Gallon of Final Solution Milliliters per Gallon of Final Solution Milliliters per Liter of Final Solution
1 0.032 0.95 0.25
3 0.096 2.84 0.75
5 0.160 4.73 1.25
10 0.320 9.46 2.50
15 0.480 14.20 3.75
25 0.800 23.66 6.25
45 1.440 42.59 11.25
60 1.920 56.78 15.00
90 2.880 85.17 22.50
Drench
Dose (Milligrams per 6-in. Pot) Drench Volume per 6-in. Pot*
(Fluid Ounces)
ppm Fluid Ounces per Gallon of Final Solution Milliliters per Gallon of Final Solution Milliliters per Liter of Final Solution
0.1 4 0.85 0.03 0.8 0.21
0.2 4 1.69 0.05 1.6 0.42
0.5 4 4.23 0.14 4.0 1.06
1.0 4 8.45 0.27 8.0 2.11
1.9 4 16.06 0.51 15.2 4.02
Adapted from Hammer, P.A. 1992.
* 2 fl oz/4-in. pot; 3 fl oz/5-in. pot; 10 fl oz/8-in. pot.


























Table 23E. Dilution/conversion chart for SUMAGIC (0.055% active ingredient).
Spray
Spray Solution (ppm) Fluid Ounces per Gallon of Final Solution Milliliters per Gallon of Final Solution Milliliters per Liter of Final Solution
1 0.26 7.57 2
3 0.77 22.71 6
5 1.28 37.85 10
10 2.56 75.71 20
15 3.84 113.56 30
25 6.40 189.27 50
30 7.68 227.12 60
50 12.80 378.54 100
Drench
Dose (Milligrams per 6-in. Pot) Drench Volume per 6-in. Pot*
(Fluid Ounces)
ppm Fluid Ounces per Gallon of Final Solution Milliliters per Gallon of Final Solution Milliliters per Liter of Final Solution
0.02 4 0.17 0.04 1.28 0.34
0.03 4 0.25 0.06 1.92 0.51
0.04 4 0.34 0.09 2.56 0.68
0.05 4 0.42 0.11 3.20 0.85
0.06 4 0.51 0.13 3.84 1.01
0.09 4 0.76 0.19 5.76 1.52
0.12 4 1.01 0.26 7.68 2.03
0.20 4 1.69 0.43 12.80 3.38
Adapted from Hammer, P.A. 1992.
* 2 fl oz/4-in. pot; 3 fl oz/5-in. pot; 10 fl oz/8-in. pot.














Table 23F. Dilution/conversion chart for FLOREL (3.9% active ingredient).
Spray
Spray Solution (ppm) Fluid Ounces per Gallon of Final Solution Milliliters per Gallon of Final Solution Milliliters per Liter of Final Solution
300 0.97 28.72 7.59
325 1.05 331.11 8.22
500 1.62 47.86 12.64
750 2.43 28.89 18.97
975 3.16 93.34 24.66
1,000 3.24 95.73 25.29
Adapted from Hammer, P.A. 1992.














Table 23G. Dilution/conversion chart for PRO-GIBB (4% active ingredient).
Spray
Spray Solution (ppm) Fluid Ounces per Gallon of Final Solution Milliliters per Gallon of Final Solution Milliliters per Liter of Final Solution
2.5 0.008 0.24 0.06
5.0 0.016 0.47 0.13
100.0 0.320 9.46 2.50
250.0 0.800 23.66 6.25
300.0 0.960 28.39 7.50
500.0 1.600 47.31 12.50
Adapted from Hammer, P.A. 1992.















Table 23H. Dilution/conversion chart for FASCINATION.
Spray
ppm BA/GA Fluid Ounces per Gallon of Final Solution Milliliters per Gallon of Final Solution Milliliters per Liter of Final Solution
1/1 0.007 0.2 0.06
5/5 0.04 1.1 0.3
10/10 0.07 2.1 0.6
25/25 0.18 5.3 1.4
50/50 0.36 10.5 2.8
75/75 0.53 15.8 4.2
100/100 0.71 21.0 5.5
Adapted from Hammer, P.A. 1992.

Tables 24 through 25 are designed to assist growers who desire to prepare their own substrate mix.

























Table 24. Pre-plant fertilizer sources and rates of application.1
Nutrient Source Rate per Cubic Yard (per m3)
Soil-Based Media Soilless Media
To provide calcium and magnesium
When a pH rise is desired: Dolomitic limestone 0-10 lb (0-6 kg) 10 lb (6 kg)
When no pH shift is desired: Gypsum for calcium 0-5 lb (0-3 kg) 0-5 lb (0-3 kg)
Epsom salt for magnesium 0-1 lb (0-0.6 kg) 0-1 lb (0-0.6 kg)
To provide phosphorus*
Superphosphate (0-45-0) 1.5 lb (0.9 kg) 2.25 lb (1.3 kg)
To provide sulfur
Gypsum (calcium sulfate) 1.5 lb (0.9 kg) 1.5 lb (0.9 kg)
To provide micronutrients: iron, manganese, zinc, copper, boron, molybdenum
Esmigran 3-6 lb (1.8-3.6 kg) 3-6 lb (1.8-3.6 kg)
Micromax 1-1.5 lb (0.6-0.9 kg) 1-1.5 lb (0.6-0.9 kg)
Promax 1-1.5 lb (0.6-0.9 kg) 1-1.5 lb (0.6-0.9 kg)
F-555HF 3 oz (112 g) 3 oz (112 g)
F-111HR 1 lb (0.6 kg) 1 lb (0.6 kg)
To provide nitrogen and potassium (optional)
Calcium nitrate, or 1 lb (0.6 kg) 1 lb (0.6 kg)
Potassium nitrate 1 lb (0.6 kg) 1 lb (0.6 kg)
From Nelson, P.V. 1998. Greenhouse Operations and Management, 5th ed. Published by Prentice Hall, Inc. Reprinted with permission.
1Rates in this table are for crops other than seedlings. Only limestone is necessary in seedling substrates. Optional nutrient sources for seedling substrate include up to 1 lb (0.6 kg) each of superphosphate, gypsum, and calcium nitrate; no potassium nitrate; and the low end of the rate range for micronutrients.
*These are maximum rates designed to supply phosphorus for 3 to 4 months if pH is maintained in a desirable range for the crop and the leaching percentage is at or below 20%.





















Table 25. Cornell Peat-Lite Mix A for seedlings, bedding plants and potted plants.
Materials Used Amount per Cubic Yard1 Amount per Bushel
Spagnum peat moss 0.5 cubic yard (13 bushels) 0.5 bushel
Horticultural grade vermiculite
#2 size for seed germination
#2 or 3 for transplanting
0.5 cubic yard (13 bushels) 0.5 bushel
Superphosphate, or 1 to 2 lb 20.5 to 41.0 grams (1 to 2 tablespoons)
Treble superphosphate2 0.5 to 1 pound 10.3 to 20.5 grams (0.6 to 1.2 tablespoons)
Ground dolomitic limestone2 5 to 10 lb 103 to 206 grams (5.2 to 10.4 tablespoons)
Gypsum2 2.0 lb 41 grams (2.5 tablespoons)
Calcium nitrate 0.5 pound 10 grams (1.2 tablespoons)
Potassium nitrate 0.5 pound 10 grams (1.2 tablespoons)
Trace element material (Use Only One)
Esmigran, or 4.0 lb 81 grams (4.0 tablespoons)
Micromax 1.5 lb 31 grams (1.7 tablespoons)
Wetting agent (Use Only One3)
Aqua-Gro 2000 granular, or 1.0 pound
Aqua-Gro 2000-L liquid4 3-5 fluid ounces 0.5 level teaspoon
PsiMatric liquid5 2-4 fluid ounces 0.5 level teaspoon

1A cubic yard equals 27 cubic feet or approximately 22 bushels. A 15% to 20% shrink occurs in mixing. Therefore, an additional 5 cubic feet or 4 bushels are used to obtain a full cubic yard.
2If treble superphosphate is used, gypsum is added to supply sulphur. If only 5 lb of limestone are used for pH control, then add the gypsum that supplied calcium and sulphur.
3The granular Aqua-Grow is preferred.
43 oz/yard for germination/seedlings, 5 oz/yard for bedding plants and pot plants.
52 oz/yard for germination/seedlings, 4 oz/yard for bedding plants and pot plants.

Adapted from Fonteno. W.C. 1994

 












Table 28. Coverage estimates for perlite, peat, topsoil and straw.
Thickness 4 cu ft Perlite 6 cu ft Canadian peat (compressed) 1 cu yd* Peat mulches, Topsoil, etc. 1 Bale
Pinestraw Wheatstraw
2 in. 28 sq ft 72 sq ft 162 sq ft 90 sq ft 180 sq ft
1 in. 48 sq ft 144 sq ft 324 sq ft 180 sq ft 360 sq ft
1/2 in. 96 sq ft 288 sq ft 648 sq ft 360 sq ft 720 sq ft
1/4 in. 192 sq ft 576 sq ft 1296 sq ft 720 sq ft 1440 sq ft
*1 cubic yard (yd3) = 27 cubic feet (ft3)

Tables 29 through 30 help determine correct spacing and number of plants at each spacing for both greenhouse and field situations.

















Table 29. Number of Plants per Acre / Plant Spacing Guide (greenhouse)
Spacing Plants/sq ft Plants/Acre of
production area
Plants/Acre of
ground covered*
8 in. x 9 in. 2.0 87,000 58,000
8 in. x 8 in. 2.3 98,000 65,000
8 in. x 7 in. 2.6 114,000 76,000
8 in. x 6 in. 3.0 130,000 87,000
6 in. x 7 in. 3.4 147,000 98,000
6 in. x 6 in. 4.0 174,000 116,000
6 in. x 5 in. 4.8 208,000 139,000
5 in. x 5 in. 5.8 252,000 168,000
5 in. x 4 in. 7.2 313,000 209,000
5 in. x 3 in. 9.6 418,000 279,000
4 in. x 3 in. 12.0 522,000 348,000
*Assuming 1/3 of production area devoted to aisles, etc.



















Table 30. Number of Plants per Acre / Plant Spacing Guide (field/orchard)*
  Spacing Between Plants Within the Row (ft)
Spacing Between Rows of Plants (ft) 6 8 10 12 14 16 18 20 22 24 26
4 1815 1361 1089 907 777 680 605 544 495 453 418
6 1218 907 726 605 518 453 403 363 330 302 279
8 907 680 544 453 388 339 302 272 247 226 209
10 726 544 435 362 311 272 242 218 207 181 167
12 605 453 362 302 259 226 201 181 165 151 139
14 518 388 311 259 222 194 172 155 141 129 119
16 453 339 272 226 194 169 151 136 123 113 104
18 403 302 242 201 172 151 134 121 110 100 93
20 363 272 218 181 155 136 121 108 99 90 83
22 330 247 207 165 141 123 110 99 90 82 76
24 302 226 181 151 129 113 100 90 82 75 69
26 279 209 167 139 119 104 93 83 76 69 64
*To determine the number of plants per acre for spacings not given in the table, multiply the distance in the row by the distance between rows and divide that number into 43,560.

Formulas for calculating greenhouse volume

These formulas are helpful in determining heating and cooling costs for greenhouses.

For the following formulas:

L = length
W = width
W1 = width of short span
W2 = width of long span
He = height from floor to eave
Hr = height from eave to top

Uneven-span greenhouse. W is the width of the base, L is the length of the base, and He is the height of the walls. Hr is the height from the top of the walls to the peak of the roof. W1 is the width from one side to the peak of the roof and W2 is the width from the other side to the peak of the roof.Uneven-span greenhouses

Figure 1-A. Formula for calculating uneven-span greenhouse volume.

Greenhouse volume in cubic feet = [(W x He) + ([W1 x Hr] ÷ 2) + ([W2 x Hr] ÷ 2)] x L

 

Even-span greenhouses. W is the width of the base, L is the length of the base, and He is the height of the walls. Hr is the height from the top of the walls to the peak of the roof.Even-span greenhouses

Figure 1-B. Formula for calculating even-span greenhouse volume.

Greenhouse volume in cubic feet = [(W x He) + ([W x Hr] ÷ 2)] x L

 

Quonset structure greenhouse. W is the width of the base, L is the length of the base, and He is the height of the walls. Hr is the height from the top of the walls to the peak of the roof.Quonset structures

Figure 1-C. Formula for calculating quonset greenhouse volume.

Greenhouse volume in cubic feet = [(W x He) + ([3.14 x Hr²] ÷ 2)] x L

Acknowledgments

The authors wish to acknowledge the following sources, from which certain tables were adapted for use in this publication.

Bailey, D. A. (1996). Alkalinity, pH and Acidification. In D. Reed (Ed.), A Grower’s Guide to Water, Media, and Nutrition for Greenhouse Crops. Ball Publishing.

Bailey, D. A., & Powell, M. A. (1999). Installation and maintenance of landscape bedding plants (Horticulture Information Leaflet 555). N.C. State University and N.C. A&T State University Cooperative Extension. https://digital.ncdcr.gov/Documents/Detail/installation-and-maintenance-of-landscape-bedding-plants/3692207

Ball, V. (Ed.). Ball RedBook: Greenhouse growing (16th ed.). (1997). Ball Publishing.

Cavins, T. J., Gibson, J. L., Whipker, B. E., & Fonteno, W. C.  (2000, December). pH and EC meters — Tools for substrate analysis (Research Report Florex.001). North Carolina State University. https://fertdirtsquirt.com/pdf/PHECmeters.pdf

Conover, C. A., & Poole, R. T. (1984). Light and fertilizer recommendations for production of acclimatized potted foliage plants. Foliage Digest, 7(8), 1–6.

Cornell University. (1977). Cornell recommendations for commercial floricultural crops: Part 1, cultural practices and production programs. https://digital.library.cornell.edu/catalog/chla7134041_8300_001

Holcomb, E. J. (Ed.). (1994). Bedding plants IV: A manual on the culture of bedding plants as a greenhouse crop (4th ed.). Ball Publishing.

Hummert International. (1999). Hummert’s helpful hints, 1999–2000 ed.

Nelson, P. V. (1998). Greenhouse operation and management (5th ed.). Prentice Hall.

Ohio Florist Association Services, Inc. (1999). Tips on growing bedding plants, 4th ed.

Ohio Florist Association Services, Inc. (1992). Tips on the use of chemical growth regulators on floriculture crops.

University of California Cooperative Extension Service. (n.d.). Tons to teaspoons (Pubication No. L2285).

Whipker, B. E., Bailey, D. A., Nelson, P. V., Fonteno, W. C., & Hammer, P. A. (n.d.). Greenhouse media lab acid addition calculator to control alkalinity in irrigation water. Cooperative Extension Services of the Northeast States.

DISCLAIMER: Trade named products listed does not imply endorsement over similar products, which may also be available.


Published by University of Georgia Cooperative Extension. For more information or guidance, contact your local Extension office.

The University of Georgia College of Agricultural and Environmental Sciences (working cooperatively with Fort Valley State University, the U.S. Department of Agriculture, and the counties of Georgia) offers its educational programs, assistance, and materials to all people without regard to age, color, disability, genetic information, national origin, race, religion, sex, or veteran status, and is an Equal Opportunity Institution.